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SIIEARY

Tke objectives were to measure the changes in crystallization rate (the

primary objective), morpholog and melting temperature of strain-crystallized

polymers and to examine their origin(s) by comparing the results with various

theo1v cal predictions.

lbsults from experimental studies of strain-crystalllized polyethylenes,

prepared in a simple shear couette rheoeter, indicate a substantial increase in

nucleation rate, a.decrease in long period, as well as an increase in melting

temperuture with increasing shear. The changes appear to have the sae

thermodynamic origin in the reduction of the amOumt of melt entropy, AS', just

prior to crystallization according to a strain-induced crystallization theory

by Yeh and Hong. Consequently from the measured nucleation rate-one can predict

vhat the decrease in long period or the increase in melting temperature should be

for a given strain-crystallized polyethylene. For example, the measured melting

temperatures are indeed shown to be comparable to those predicted from nucleatiua

rate measurements.

Among other significant findings are (1) higher molecular weight enhances

the rate of strain-induced crystallization, in contrast to the usual retardation

effect found under simple supercoolings and (2) the degree of c-axis orientation

for strain-induced crystallites is always high (fc 0.8) when and if they form

under shear. On the other hand, if shear-induced crystallization does not occur

during shearing the oriented crystallites formed under simple supercooling

conditions have comparatively low degree of c-axis orientation (f c 0.2).
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TECHNICAL REPORT

KINETICS OF STRAIN-INDUCED CRYSTALLIZATION

OF POLXME DURING FLOW

Previously we have demonstrated that a simple sb-aar field couette rheometer

can be used to obtain nucleation induction times t i Of strainduced

crystallites (SIC) and information about their nucleation rates 2] The

same couette rheometer was used to prepare numerous polyethylenes sheared at

various temperatures and then quenched in ice water. Effects of shear rate t

-and shearingJepeat .e on N (in terms ot ti), morpolor (prlinrlily In

terms of c-axis orientation f. and long period L) and melting taisperature Tz

were examined in. detail. Extensive induction times were obtained on two different

molecular weight polyethylenes to establish what effect, if any, molecular

weight has on the nucleation rates of SIC.

Induction Time Analyses

First we were able to again confirm that the onset of an increase in shear

force vs. time is an excellent indication of SIC (Fig. I). For example, samples

prepared at 1350C. show an induction time while those prepared at the same

shear rate at 140, 1450 and 1500 C. which do not strain-crystallize at such

small supercoolings, do not show induction times. Melting temperature studies

also confirm the absence of SIC crystallites in these Non-SIC samples with no

induction times. WAXS studies, to be shown below, indicate that Non-SIC samples

have much lower c-axis orientation (f 2 0.2) than SIC samples which show induction.

times (f*c > 0.8). This is an important finding in the case for shear-Induced

-crystallization because for years many researchers believed that SIC crystallites,

especially those formed by shear, could have a such wider range of fe

orientations because of the proposed row-nucleation model This view has

remained until now in spite of the fact that numerous experimental findings on

A ..
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SIC from elongational strains have indicated otherwise [1 ' .

Analyses of induction times from numerous preparations (Figs. 2 and 3)

all indicate that they follow an empirical equation 1/ti = Aik-exp(E 1 /ET).

The parameters A, and Ei depend greatly upon =olecular weight (Table 1).

However they are independent of shear rate and te=peature for SIC. Compared

to thermally-induced crystallization[ 5 ] the AI's are several orders larger

and the EiIs several times smaller. Since 1/ti = A1 - expt/RT)exp(-6F'/BT),

the variations in t i with molecular weight indicate (1) that the SIC nucleation

rate increases with molecular weight, in contrast to thez-ally-inducea crya-

tallization where increasing molecular weight decreases the TIC nucleatin rate

and (2) that the origin of nucleation rate increase is primarily entropi-

caused by a reduction in melt entropy, AS t , which is contained in the expressions

for AF[2 1 . According to our thec. [ 2 ] ,- - AS' is responsible for changes in

nucleation rate, long period and melting temperature. Consequently one can show

that from the known constants A, and E1 (Table 1) ve can predict the enhancements

of nucleation-rate N°/N (NO and N being the nucleation rates for SIC and TIC
respectively) by equation 1, the equilibrium melting temperature T 0 for SIC

m

by equation 2, and the critical nucleus thickness Ic 0 by equation 3 for a given

molecular weight polyethylene.
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The three equations were derived on the assumption. that the SIC process is

heterogeneous. Otherwise another set of equations can be derived.

Morpholoical Studies

From WAXS we were able to obtain orientation functions fa, fb and f. for

both SIC and Non-SIC samples. All SIC samples are found to have relatively

high f values. For example, of all the swuples shovn In Figure 4a (Fig. 41T])

which were sheared .t 6.5 sec - 1 for the same amout. of shear, the only one

that has an induction time and high f value is the one sheared .at 135 C.

All the other samples :In Figs. a aan. 4b show no t i and retXV3 low fc values

because they do not contain SIC crystals. . - -.

It is also .of interest to note that the SIC samples contain an .additional

triclinie crystal phase as indicated by the presence of the "extra" refnections

(Fig. 5). These "extra" reflections have been indexed to correspond to a

triclii phase (Figure .6), which results from strain-induced crystallization
aur* _o1 81.

during flow

From SAXS studies we were able to ascertain the presence of tvo long periods,

L. and L2 (Figure 7,[9]). h. (-50-60 nm) varies with shear n conditions, j and

T, indicating that it corresponds to the SIC crystals formed at the shearing

temperature. L2 (730 am) remains iesseatially --unchanged with t end T., indicating

that L2 corresponds to crystals formed during TIC, i.e. during the quenching

process at low temperatures.

The decrease of L with t arises from the decrease in melt entropy AS' (2]

with increase in t and can be predicted from equation 3. The slight difference

in long periods L2 (32 nm vs. 30 rin) shown in Figure T is real; however the origin

of this difference is unclear at the present time.

Meltina Teaverature

Relting temperatures were obtained under equilibrium conditions using

3
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restrained smples in DSC. Double peaks in DSC endotherms T (136-1.8°C.)

and T (1310 C.) were observed for all the sheared samples with induction

times. However only T was observed for Non-SIC samples, which showed no

induction time. T varied while T remained essentially constant with I

and Ts, again indicating that T M,h can be associated with SIC crystals

generated during the shearing process and that T can be associated with

thermally-induced crystallites. generated, during the quenching process. The

measured T results are shown in Figure 8, together with melting t~empratures

predicted- ftaw equation T. T agreeMMVis: considered.ta-be qiwoadt

considering thew predicted. melti & t--sare.- eeq.'brium. values for

in iately large crystals whereas- the measured melting temposatu were t

crystallites of limited crystal thicknesses (<50-60 = from Fig. 7)-

We can conclude by saying that although there are still numerous unresolved

questions regarding SIC, the present study has clarified several important

controversial aspects, namely, (1) the degree of orientation of SIC crystals,

(2) the magnitude of changes in crystallization rate, long period and melting

temperature of SIC polymer and (3) the origin of their changes.-- We hope that

these aspects will become less controversial as our results become better known

and substantiated by other researchers.
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Table 1

Parameters Ai (see-) and E1 (Keel/mle).

14wy ~ Ai___ _ Ei

~-226 110
Maries 6050 90,000 , 2., x 10 .440 [5]

marlex 6050 90,000 8.3 x 10- 1 2 3  220

Marlex 6001 200,000 1.2 x 10"24 41.4

I
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ABSTRACT

The effects 'of shearing conditions (i.e., shear

temperature and shear rate) on the degree of orientation of

polyethylene Marlex 6006 and to what extent the induced

orientation could be relaxed were examined in this study.

Two types of samples were prepared; namely, SIC and

non-SrC samples. The SIC samples show induction times and.

posse-- & high degree of c-axis orientation along the shear

di rect omTu..- e-h.,n,=ec--oieffof" SrC- sM M caw- be-

relaxed to-. small extent bu.- does. not-. reach a steady value.-

Non-SI- samples do not: show- fnductiortiuw gd.thr sbs-

iow degreea of. c-axis o-ientatiom. The- induced- orientat-ion_

of non-SIC .samples can be relaxed to a steady state value

with an activation energy of 90 kJ/mole.

Our results also indicate that when the shear

temperature is at and above I4 5FC, polyethylene can be

sheared up to 200X without introducing any significant

molecular orientation even at very high shear rates.
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